Mathematical Modelling of Near-hover Insect Flight Dynamics

نویسنده

  • B. Cheng
چکیده

Using a dynamically scaled robotic wing, we studied the aerodynamic torque generation of flapping wings during roll, pitch, and yaw rotations of the stroke plane. The total torque generated by a wing pair with symmetrical motions was previously known as flapping counter-torques (FCTs). For all three types of rotation, stroke-averaged FCTs act opposite to the directions of rotation and are collinear with the rotational axes. Experimental results indicate that the magnitude of FCTs is linearly dependent on both the flapping frequency and the angular velocity. We also compared the results with predictions by a mathematical model based on quasi-steady analyses, where we show that FCTs can be described through consideration of the asymmetries of wing velocity and the effective angle of attack caused by each type of rotation. For roll and yaw rotations, our model provided close estimations of the measured values. However, for pitch rotation the model tends to underestimate the magnitude of FCT, which might result from the effect of the neglected aerodynamics, especially the wake capture. Similar to the FCT, which is induced by body rotation, we further provide a mathematical model for the counter force induced by body translation, which is termed as flapping counter-force (FCF). Based on the FCT and FCF models, we are able to provide analytical estimations of stability derivatives and to study the flight dynamics at hovering. Using fruit fly (Drosophila) morphological data, we calculated the system matrix of the linearized flight dynamics. Similar to previous studies, the longitudinal dynamics consist of two stable subsidence modes with fast and slow time constants, as well as an unstable oscillatory mode. The longitudinal instability is mainly caused by the FCF induced by an initial forward/backward velocity, which imparts a pitch torque to the same direction of initial pitch velocity. Similarly, the lateral dynamics also consist of two stable subsidence modes and an unstable oscillatory mode. The lateral instability is mainly caused by the FCF induced by an initial lateral velocity, which imparts a roll torque to the same direction of initial roll velocity. In summary, our models provide the first analytical approximation of the six-degree-of-freedom flight dynamics, which is important in both studying the control strategies of the flying insects and designing the controller of the future flapping-wing micro air vehicles (MAVs). INTRODUCTION Recent studies on the tuning dynamics of animal flight [1, 2] showed that during low-speed yaw turns (rotation about the vertical axis such as saccade), flapping wing fliers ranging in size from fruit flies to large birds are subject to substantial passive damping through an aerodynamic mechanism termed flapping counter-torque (FCT). As an inherent property, FCT helps the flapping-wing fliers to slow down body rotation during rapid maneuvers and thus reduces the required active torque produced by asymmetries of wing motion. As a tradeoff, however, flapping-wing fliers must overcome extensive aerodynamic damping (a result of FCT) to accelerate or to initiate a maneuver [1]. Not only was the passive damping found crucial during fast yaw rotations, simulation results [1] suggested that it is also present during roll and pitch maneuvers. In flying animals, measurements of body kinematics showed that most yaw turns are accompanied by substantial change in roll angular velocity [3]. Even at low speed maneuvering or hovering, most flapping wing flies perform banked turns which involve rolling. Furthermore, during escape or tracking flight, rapid reorientations of roll and pitch angles (causing reorientation of the net aerodynamic force vector) are essential for fliers to achieve fast maneuvers [4, 5]. 1 Copyright © 2010 by ASME Proceedings of the ASME 2010 Dynamic Systems and Control Conference DSCC2010 September 12-15, 2010, Cambridge, Massachusetts, USA

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Helicopter Rotor Airloads Prediction Using CFD and Flight Test Measurement in Hover Flight

An implicit unsteady upwind solver including a mesh motion approach was applied to simulate a helicopter including body, main rotor and tail rotor in hover flight. The discretization was based on a second order finite volume approach with fluxes given by the Roeand#39;s scheme. Discretization of Geometric Conservation Laws (GCL) was devised in such a way that the three-dimensional flows on arbi...

متن کامل

Improved Mathematical Model for Helicopters Flight Dynamics Applications

The purpose of this paper is concerned with the mathematical model development issues, necessary for a better prediction of dynamic responses of articulated rotor helicopters. The methodology is laid out based on mathematical model development for an articulated rotor helicopters, using the theories of aeroelastisity, finite element and the time domain compressible unsteady aerodynamics. The he...

متن کامل

Autonomous Hovering of a Noncyclic Tiltrotor UAV: Modeling, Control and Implementation

The aim of this paper is to present a mini tilt-rotor unmanned aerial vehicle which is capable to perform hover flight. Unlike conventional full-scale tiltrotors, in our design we avoid the use of swashplate and we propose a simpler mechanical design which use only the tilting rotors to stabilize the vehicle dynamics. A detailed mathematical model is derived via the Newton-Euler formalism. A no...

متن کامل

Examination of Quadrotor Inverse Simulation Problem Using Trust-Region Dogleg Solution Method

In this paper, the particular solution technique for inverse simulation applied to the quadrotor maneuvering flight is investigated. The ‎trust-region dogleg (DL) technique which is proposed alleviates the weakness of Newton’s method used for numerical differentiation of system states in the solution process. The proposed technique emphasizes global convergence solution to the inverse simulatio...

متن کامل

Predicting power-optimal kinematics of avian wings.

A theoretical model of avian flight is developed which simulates wing motion through a class of methods known as predictive simulation. This approach uses numerical optimization to predict power-optimal kinematics of avian wings in hover, cruise, climb and descent. The wing dynamics capture both aerodynamic and inertial loads. The model is used to simulate the flight of the pigeon, Columba livi...

متن کامل

Hover Flight Helicopter Modelling and Vibrations Analysis

In this work, different modelling aspects of helicopter aerodynamics are discussed. The helicopter model is on Sikorsky configuration, main rotor in perpendicular combination with a tail rotor. The rotors are articulated and their blades are rigid. The main rotor implementation takes into account flap, lag and feather degrees of freedom for each of the equispaced blades as well as their dynamic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010